The Impact of Increased Unit Cycling on Steam Turbine Failure Modes

February 20, 2019

Stephen R. Reid, P. E.
President and Principal Engineer
Steve.Reid@TGAdvisers.com

Thomas R. Reid, P.E.
Manager of Engineering
Tom.Reid@TGAdvisers.com
Preview of Industry Trends

• Steam Turbine
 – **More Cycling**
 • Two-shifting
 – Reduced minimum loads
 – Re-powering of vintage coal assets
 – Higher inlet temperatures
 – Combined cycle application

• Generator
 – Along for the ride!
Flexible Operations Impact on Steam Turbine Failure Modes

<table>
<thead>
<tr>
<th>Flex Ops</th>
<th>ON/OFF Cycling</th>
<th>Minimum Load Operation</th>
<th>Fast Start</th>
</tr>
</thead>
</table>

Flex Ops

Impacted Components
- HP and IP Early Stage Rotating and Stationary Blading
- Valve components
- Inner casing
- Rotor blade attachments
- Rotor peripheral surfaces
- Blade Roots
- Blade Roots (1st stage HP or large IP Blades)
- Bearing, Pedestals, Foundations
- HP, IP, LP and Generator Rotors
- LP Rotor Blade Attachments
- LP Blading
- LP Seals/Grooves
- LP Rotor Disc Faces
- Turbine Rotor and Blades
- Full unit

Best Practices
- SPE coatings on early stages
- Operate in sliding pressure mode to reduce thermal differences
- Upgrade blade path components to reduce impingement angles
- Face valve components
- Minimize steam to metal mismatch to reduce thermal stresses
- Ensure detailed NDE plan to impact for cracking
- Optimize hold speeds and times based on rotor NDE findings and crack growth analysis
- Utilize steam seal prewarming on cold starts
- Audit Operational Data to Ensure:
 - Compliant with load and backpressure limits
 - Correct warmup hold speeds
 - Vacuum is broken at correct RPM during coast down
 - Set appropriate seal clearances for the mode of operation
 - Ensure complete casing insulation on cover and base
 - Factor in cold vs. hot alignment differences
 - High speed balance flexible rotors
- NDE Impact all wet rows for SCC in rotor blades attachments
- Uncertainty on stress:
 - Axial Entry: MT of End Face
 - Finger Root: Partial blade removal
- Frequency test tuned LP blading to trend the change in blade frequencies from mass loss due to erosion
- Calculate Eddy Current inspection of eroded areas
- Smoothing of erosion damage is not typically recommended as it will increase future erosion rates
- Frequency test tuned LP blading to trend the change in blade frequencies from mass loss due to erosion
- Complete Eddy Current inspection of eroded areas
- Audit different expansion instrumentation is calibrated

Significant Impact
- Significant Impact

Moderate Impact
- Moderate Impact

Minor or No Impact
- Minor or No Impact

© TG Advisers™ Inc. Confidential
STEAM TURBINE FAILURE MECHANISMS
Steam Turbine Cycling Considerations

• Primary Failure Mechanisms
 – Low cycle fatigue cracking of rotor, blades, casing, generator
 – Solid particle erosion
 – Vibration and radial/axial rubbing
 – Distortion of casing

• Secondary Failure Mechanisms
 – High cycle fatigue cracking
 – Water droplet erosion

• Operational Concerns:
 – Vibration
 – Turbine water induction
 – Differential expansion
 – Boiler/HRSG issues
 – Overspeed
 – Loss of Lube Oil
LOW CYCLE FATIGUE (LCF)
Cracking – Cycling

- Primarily driven by LCF – areas with stress concentrations are of highest concern
 - Startup/shutdown cycles
 - Thermal stresses $\rightarrow \Delta T$;
 HP & IP vs LP
 » Creep interaction degrades material properties
 - Mechanical stresses $\rightarrow \sigma = m r \omega^2$
- Can be exacerbated by specific startup/shutdown practices
 - Improper or inadequate soak times
Cold Start Steam-to-Metal Temperature Mismatch
Common Inspection Findings
EROSION – SOLID PARTICLE AND WATER DROPLET EROSION
Solid Particle Erosion

- First few stages of IP and HP blading, and valves
- Damage caused by high velocity rust particles striking blading
- Surface roughness deteriorates fatigue strength
- Operator Awareness
 - Minimize startups/load swings - dislodge particles
 - Operate in sliding pressure mode - reduces throttle pressure which keeps velocities down
Tenon SPE
Nozzle Plate and Block SPE
LP Water Droplet Erosion

• Surface roughness caused by droplets reduces fatigue properties
• Reduces mass of tuned blades
• Repair Considerations
 – Blade frequency testing and trending
 – Stellite repair and/or stellite solid nose bar
 – Flag stellite
 – Blade replacement
• Operator Awareness
 – Keep reheat temperatures at design level
Erosion Rates are Non-Linear

© TG Advisers™ Inc. Confidential
HIGH CYCLE FATIGUE (HCF)
Partial Arc Admission - HP inlet

- **Control Stage Blading Issue**
- **Shock Loading**
 - Increased steady loading
 - Impact entering the arc excites blade modes (usually first mode)
- **Nozzle Passing Frequency Concerns**
 - Impulse blading
 - High nozzle exit velocities
- **Operation and/or design changes may be required to correct this issue**
Stall Flutter – LP Blading

- Flow separation produces vibrations
- Occurs in last stage of LP under low load and high back-pressure conditions
- Conditions of concern:
 - Longer blade designs with lower first blade mode frequencies
 - High air in-leakage
 - Summer periods where backpressure control is challenged
 - Potential for increase in failure mode with shift towards load cycling
EVENT DRIVEN
Water Induction Common Causes

• Extraction Sources
 – Leaking Feedwater Heater Tubes
 – Level Control Failures
 – Poor design – heater drains
 – Obstructed extraction line drains

• Main Steam Sources
 – Inadequate drains or not at low point
 – Fast start after boiler trip
 – Attemperator spray malfunctions

• Steam Seal Systems
 – Auxiliary source issues
 – Clogged gland seal header or inadequate drains
 – Operational
Loss of Lube Oil

- Loss of primary and emergency lube oil pumps
- Rotor loses oil wedge and babbitt damage occurs. This leads to a significant radial drop of rotor
- Can result in major rub damage, with potential for high hardness and rotor bowing
Turbine Trip Protection

• Worst case is overspeed event with severe damage
• Potential problem indications:
 – Slow or sticky steam valve operation
 – Delays in rolling down to turning gear due to valve leakage
 – Delays in valve closure
• Mitigation?
 – Valve testing
 – Routine overspeed testing
 – Routine maintenance
 – Sampling and analysis of hydraulic oil
 – Thorough testing to any newly installed turbine trip system
 – Trip on Reverse Power
Thank you – Questions?